Assimilating Satellite Observations with a Local Ensemble Kalman Filter

نویسندگان

  • Elana Judith Fertig
  • Brian R. Hunt
  • Harry Tamvakis
  • Brian Hunt
  • Edward Ott
  • Istvan Szunyogh
چکیده

Title of dissertation: ASSIMILATING SATELLITE OBSERVATIONS WITH A LOCAL ENSEMBLE KALMAN FILTER Elana Judith Fertig Doctor of Philosophy, 2007 Dissertation directed by: Professor Brian R. Hunt Department of Mathematics Numerical weather prediction relies on data assimilation to estimate the current state of the atmosphere. Generally speaking, data assimilation methods combine information from observations and from a prior forecast state, taking into account their respective uncertainties. Ensemble-based data assimilation schemes estimate the forecast uncertainty with the sample covariance from an ensemble of forecasts. While these schemes have been shown to successfully assimilate conventional observations of model state variables, they have only recently begun to assimilate satellite observations. This dissertation explores some of the complications that arise when ensemble-based schemes assimilate satellite observations. Although ensemble data assimilation schemes often assume that observations are taken at the time of assimilation, satellite observations are available almost continuously between consecutive assimilation times. In Chapter 2, we formulate a “four-dimensional” extension to ensemble-based schemes that is analogous to the operationally used scheme 4D-VAR. Using perfect model experiments with the Lorenz-96 model, we find that the four-dimensional ensemble scheme can perform comparably to 4D-VAR. Many ensemble data assimilation schemes utilize spatial localization so that a small ensemble can capture the unstable degrees of freedom in the model state. These local ensemble-based schemes typically allow the analysis at a given location to depend only on observations near that location. Meanwhile, the location of satellite observations cannot be pinpointed in the same manner as conventional observations. In Chapter 3, we propose a technique to update the state at a given location by assimilating satellite radiance observations that are strongly correlated to the model state there. For satellite retrievals, we propose incorporating the observation error covariance matrix and selecting the retrievals that have errors correlated to observations near the location to be updated. Our selection techniques improve the analysis obtained when assimilating simulated satellite observations with a seven-layer primitive equation model, the SPEEDY model. Finally, satellite radiance observations are subject to state-dependent, systematic errors due to errors in the radiative transfer model used as the observation operator. In Chapter 4 we propose applying state-space augmentation to ensemble based assimilation schemes to estimate satellite radiance biases during the data assimilation procedure. Our approach successfully corrects such systematic errors in simulated biased satellite observations with the SPEEDY model. ASSIMILATING SATELLITE OBSERVATIONS WITH A LOCAL ENSEMBLE KALMAN FILTER

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter

Many ensemble Kalman filter data assimilation schemes benefit from spatial localization, often in both the horizontal and vertical coordinates. On the other hand, satellite observations are often sensitive to the dynamics over a broad layer of the atmosphere; that is, the observation operator that maps the model state to the observed satellite radiances is a nonlocal function of the state. Simi...

متن کامل

Assimilating non-local observations with a local ensemble Kalman filter

Many ensemble data assimilation schemes utilize spatial localization so that a small ensemble can capture the unstable degrees of freedom in the model state. These local ensemble-based schemes typically allow the analysis at a given location to depend only on observations near that location. Meanwhile, the location of satellite observations cannot be pinpointed in the same manner as conventiona...

متن کامل

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

We present an efficient variation of the Local Ensemble Kalman Filter (Ott et al. 2002, 2004) and the results of perfect model tests with the Lorenz-96 model. This scheme is locally analogous to performing the Ensemble Transform Kalman Filter (Bishop et al. 2001). We also include a four-dimensional extension of the scheme to allow for asynchronous observations.

متن کامل

Eakf-cmaq: Development and Initial Evaluation of an Ensemble Adjustment Kalman Filter Based Data Assimilation for Co

An integrated approach to modeling atmospheric chemistry with trace gas data assimilation is a relatively new focus of the atmospheric chemistry modeling community. It is expected that the predictive capability of CTMs can be significantly improved by assimilating measurements of key trace gases from satellite-based platforms and surface monitors. Ensemble adjustment Kalman filter (EAKF) method...

متن کامل

Ocean current estimation using a Multi-Model Ensemble Kalman Filter during the Grand Lagrangian Deployment experiment (GLAD)

In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two vers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007